All You Need To Know About CMS Pulse Oximeters

By Leticia Jensen


The process that takes place when blood is being oxygenated can be monitored through and equipment known as CMS pulse oximeters. The levels of oxygen in the body should always be above ninety five percent. These devices are non-invasive, their utilization is by the medical professionals to their patients to be able to maintain the required levels of oxygen in the body. You can be able to find these equipments in areas such as intensive care, operation theatres, treatment ward and recovery area in the hospital facility.

These devices are very effective and normally are able to detect even the most slightest unsafe change in blood oxygenation. Though these medical devices have historical precedence, they became wide spread in the 1890s. This is how these devices work. An oxygen monitor has a small probe which is clipped to the spot of the patient body where there is particularly good flow of blood. Normally an oxygen monitor is clipped to a finger or an earlobe.

This monitor is then attached to a separate computerized unit whose work is majorly to display the readings. Inside the probe there is a light emitter that sends out two streams of light. One is red and the other infrared. These steams of light emitted are received and measured by a photo detector, which is located opposite the emitter.

Oxygenated hemoglobin typically absorbs a greater amount of infrared light while allowing the red light to pass through. On the other hand, the deoxygenated blood absorbs more of red lights and allow more of infrared to pass through. An oxygen monitor can calculate the level of oxygenation present by determining by calculating the amount of light absorbed by the hemoglobin at the two different wavelengths.

The machines make an alarm sound once it detects shortage of oxygen in a patient who is on anesthesia. When the body does not have enough oxygen in the blood for duration of at least three minutes, then it can result to brain damage or heart failure. This necessitates early detections.

As mentioned early, a healthy body should never fall below 95 percent of O2 saturation. The good thing with these monitoring devices is that they are able to detect a change as small as one percent. Before oxygen monitors were discovered, healthcare practitioners would only manage to detect oxygen starvation when the patient is already at very critical conditions.

There are different types of oximeters, and they include pediatric which can be wrist, handheld, and finger oxygen monitor. Pediatric oxygen monitors are designed for children producing, and they produce very accurate results. They have features that help in determining the best finger for testing and position. These devices were once too large and expensive for patients to have in their home, but now there are portable and affordable oxygen monitors in the market today.

You can find any model of cms oxygen monitors in the present market. The finger model usually gives effective results. They can be utilized in treatment of conditions such as neonatal blindness and pneumonia among others.




About the Author: